Convergence rates for MCMC algorithms for a robust Bayesian binary regression model
نویسندگان
چکیده
Abstract: Most common regression models for analyzing binary random variables are logistic and probit regression models. However it is well known that the estimates of regression coefficients for these models are not robust to outliers [26]. The robit regression model [1, 16] is a robust alternative to the probit and logistic models. The robit model is obtained by replacing the normal (logistic) distribution underlying the probit (logistic) regression model with the Student’s t−distribution. We consider a Bayesian analysis of binary data with the robit link function. We construct a data augmentation (DA) algorithm that can be used to explore the corresponding posterior distribution. Following [10] we further improve the DA algorithm by adding a simple extra step to each iteration. Though the two algorithms are basically equivalent in terms of computational complexity, the second algorithm is theoretically more efficient than the DA algorithm. Moreover, we analyze the convergence rates of these Markov chain Monte Carlo (MCMC) algorithms. We prove that, under certain conditions, both algorithms converge at a geometric rate. The geometric convergence rate has important theoretical and practical ramifications. Indeed, the geometric ergodicity guarantees that the ergodic averages used to approximate posterior expectations satisfy central limit theorems, which in turn allows for the construction of asymptotically valid standard errors. These standard errors can be used to choose an appropriate (Markov chain) Monte Carlo sample size and allow one to use the MCMC algorithms developed in this paper with the same level of confidence that one would have using classical (iid) Monte Carlo. The results are illustrated using a simple numerical example.
منابع مشابه
Efficient estimation of the link function parameter in a robust Bayesian binary regression model
It is known that the robit regression model for binary data is a robust alternative to the more popular probit and logistic models. The robit model is obtained by replacing the normal distribution in the probit regression model with the Student’s t distribution. Unlike the probit and logistic models, the robit link has an extra degrees of freedom (df) parameter. It is shown that in practice it ...
متن کاملThe Analysis of Bayesian Probit Regression of Binary and Polychotomous Response Data
The goal of this study is to introduce a statistical method regarding the analysis of specific latent data for regression analysis of the discrete data and to build a relation between a probit regression model (related to the discrete response) and normal linear regression model (related to the latent data of continuous response). This method provides precise inferences on binary and multinomia...
متن کاملBayesian Logistic Regression Model Choice via Laplace-Metropolis Algorithm
Following a Bayesian statistical inference paradigm, we provide an alternative methodology for analyzing a multivariate logistic regression. We use a multivariate normal prior in the Bayesian analysis. We present a unique Bayes estimator associated with a prior which is admissible. The Bayes estimators of the coefficients of the model are obtained via MCMC methods. The proposed procedure...
متن کاملSpatial Design for Knot Selection in Knot-Based Low-Rank Models
Analysis of large geostatistical data sets, usually, entail the expensive matrix computations. This problem creates challenges in implementing statistical inferences of traditional Bayesian models. In addition,researchers often face with multiple spatial data sets with complex spatial dependence structures that their analysis is difficult. This is a problem for MCMC sampling algorith...
متن کاملGeometric convergence of the Haar PX-DA algorithm for the Bayesian multivariate regression model with Student t errors
We consider Bayesian analysis of data from multivariate linear regression models whose errors have a distribution that is a scale mixture of normals. Such models are used to analyze data on financial returns, which are notoriously heavy-tailed. Let π denote the intractable posterior density that results when this regression model is combined with the standard non-informative prior on the unknow...
متن کامل